4.8 Article

A Hollow-Shell Structured V2O5 Electrode-Based Symmetric Full Li-Ion Battery with Highest Capacity

期刊

ADVANCED ENERGY MATERIALS
卷 9, 期 31, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201900909

关键词

full cell; lithium-ion batteries; multi-hollow-shell; symmetric batteries; V2O5

资金

  1. Australian Research Council [DP180103430]
  2. Griffith University [CEE2551]

向作者/读者索取更多资源

The symmetric batteries with an electrode material possessing dual cathodic and anodic properties are regarded as an ideal battery configuration because of their distinctive advantages over the asymmetric batteries in terms of fabrication process, cost, and safety concerns. However, the development of high-performance symmetric batteries is highly challenging due to the limited availability of suitable symmetric electrode materials with such properties of highly reversible capacity. Herein, a triple-hollow-shell structured V2O5 (THS-V2O5) symmetric electrode material with a reversible capacity of >400 mAh g(-1) between 1.5 and 4.0 V and >600 mAh g(-1) between 0.1 and 3.0 V, respectively, when used as the cathode and anode, is reported. The THS-V2O5 electrodes assembled symmetric full lithium-ion battery (LIB) exhibits a reversible capacity of approximate to 290 mAh g(-1) between 2 and 4.0 V, the best performed symmetric energy storage systems reported to date. The unique triple-shell structured electrode makes the symmetric LIB possessing very high initial coulombic efficiency (94.2%), outstanding cycling stability (with 94% capacity retained after 1000 cycles), and excellent rate performance (over 140 mAh g(-1) at 1000 mA g(-1)). The demonstrated approach in this work leaps forward the symmetric LIB performance and paves a way to develop high-performance symmetric battery electrode materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据