4.8 Article

Electro-Oxidation of Methane on Platinum under Ambient Conditions

期刊

ACS CATALYSIS
卷 9, 期 8, 页码 7578-7587

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.9b01207

关键词

platinum; methane; electro-oxidation; DFT; kinetic modeling

资金

  1. Natural Gas Initiative (NGI) at Stanford
  2. U.S. Department of Energy, Chemical Sciences, Geosciences, and Biosciences (CSGB) Division of the Office of Basic Energy Sciences [DE-AC02-76SF00515]
  3. National Science Foundation [ECCS-1542152]

向作者/读者索取更多资源

Herein, we investigate the electrochemical conversion of methane to CO2 on platinum electrodes under ambient conditions. Through a combination of experimentation, density functional theory (DFT) calculations, and ab initio kinetic modeling, we have developed an improved understanding of the reaction mechanism and the factors that determine catalyst activity. We hypothesized that the rate-determining methane activation step is thermochemical (i.e., CH4(g) -> CH3* + H*) as opposed to electrochemical based on a fitted barrier of approximately 0.96 eV that possesses minimal potential dependence. We developed a simple kinetic model based on the assumption of thermochemical methane activation as the rate-determining step, and the results match well with experimental data. Namely, the magnitude of the maximum current density and the electrode potential at which it is realized agree with our ab initio kinetic model. Finally, we expanded our kinetic model to include other transition metals via a descriptor-based analysis and found platinum to be the most active catalyst for the oxidation of methane, which is in line with previously published experimental observations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据