4.8 Review

sp2/sp3 Framework from Diamond Nanocrystals: A Key Bridge of Carbonaceous Structure to Carbocatalysis

期刊

ACS CATALYSIS
卷 9, 期 8, 页码 7494-7519

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.9b01565

关键词

nanodiamond; sp(2)/sp(3) hybrids; carbocatalysis; structure-performance regime; redox reaction

资金

  1. Australian Research Council [DP190103548]
  2. Fundamental Research Funds for National Natural Science Foundation of China [21777033]
  3. Science and Technology Program of Guangdong Province [2017B020216003]

向作者/读者索取更多资源

Diamond nanocrystals in robust spa hybridization are appealing carbonaceous materials in the material community, whose structure can be transformed into unique sp(2)/sp(3) nanohybrids as bulky nanodiamonds (NDs) and sp(2) concentric onion-like carbons. Functionalized NDs have been used as carbocatalysts to drive a diversity of heterogeneous reactions, presenting promising catalytic performances, great stability/durability, and low toxicity compared with other carbonaceous and metal materials. More importantly, the tunable configurations of NDs-related materials from spa to sp(2)/sp(3) and sp(2) carbons endow them as ideal chemical probes to elucidate the intrinsic nature toward metal-free catalysis. Herein, a comprehensive overview is presented in the synthesis, properties, functionalization, and characterization of NDs-based materials as well as their recent applications in fuel cell reactions, carbon dioxide reduction, photocatalysis, organic synthesis, oxidative dehydrogenation reactions, and advanced oxidation processes. More importantly, we provide an insightful discussion on unveiling the intrinsic catalytic centers and structure-reactivity chemistry of NDs in redox reactions from an atomic level. Advanced protocols were proposed for regulating the electronic structures of NDs by surface and structural engineering toward better carbocatalysis, which assists to provide valuable guidance for the rational design of ND-based materials toward target catalytic processes. Finally, future research opportunities were proposed to address the current dilemmas in materials synthesis, to facilitate mechanistic studies by theoretical computations, to enable structural/surface functionalization of NDs for advanced catalysis, and to expand the NDs-based materials toward other promising chemical reactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据