4.8 Article

Site-specific cleavage of bacterial MucD by secreted proteases mediates antibacterial resistance in Arabidopsis

期刊

NATURE COMMUNICATIONS
卷 10, 期 -, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-019-10793-x

关键词

-

资金

  1. Alexander von Humboldt-Foundation
  2. Bayer Science and Education Foundation
  3. Max Planck Society

向作者/读者索取更多资源

Plant innate immunity restricts growth of bacterial pathogens that threaten global food security. However, the mechanisms by which plant immunity suppresses bacterial growth remain enigmatic. Here we show that Arabidopsis thaliana secreted aspartic protease 1 and 2 (SAP1 and SAP2) cleave the evolutionarily conserved bacterial protein MucD to redundantly inhibit the growth of the bacterial pathogen Pseudomonas syringae. Antibacterial activity of SAP1 requires its protease activity in planta and in vitro. Plants overexpressing SAP1 exhibit enhanced MucD cleavage and resistance but incur no penalties in growth and reproduction, while sap1 sap2 double mutant plants exhibit compromised MucD cleavage and resistance against P. syringae. P. syringae lacking mucD shows compromised growth in planta and in vitro. Notably, growth of Delta mucD complemented with the non-cleavable MucD(F106Y) is not affected by SAP activity in planta and in vitro. Our findings identify the genetic factors and biochemical process underlying an antibacterial mechanism in plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据