4.8 Article

High-resolution tip-enhanced Raman scattering probes sub-molecular density changes

期刊

NATURE COMMUNICATIONS
卷 10, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-019-10618-x

关键词

-

资金

  1. National Science Foundation Center for Chemical Innovation [CHE-1414466]
  2. National Science Foundation [ACI-1548562]
  3. NSF [ACI-1445606]

向作者/读者索取更多资源

Tip-enhanced Raman spectroscopy (TERS) exhibits new selection rule and sub-nanometer spatial resolution, which is attributed to the plasmonic near-field confinement. Despite recent advances in simulations of TERS spectra under highly confined fields, a simply physical mechanism has remained elusive. In this work we show that single-molecule TERS images can be explained by local sub-molecular density changes induced by the confined near-field during the Raman process. The local sub-molecular density changes determine the spatial resolution in TERS and the gradient-based selection rule. Using this approach we find that the four-fold symmetry of meso-tetrakis(3,5-di-tert-butylphenyl)porphyrin (H2TBPP) TERS images observed in experiments arises from the combination of degenerate normal modes localized in the functional side groups rather than the porphyrin ring as previously considered. As an illustration of the potential of the method, we demonstrate how this new theory can be applied to microscopic structure characterization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据