4.8 Article

Bio-inspired iron-catalyzed oxidation of alkylarenes enables late-stage oxidation of complex methylarenes to arylaldehydes

期刊

NATURE COMMUNICATIONS
卷 10, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-019-10414-7

关键词

-

资金

  1. Natural Science Foundation of China [21776139, 21302099]
  2. Natural Science Foundation of Jiangsu Province [BK20161553]
  3. Natural Science Foundation of Jiangsu Provincial Colleges and Universities [16KJB150019]
  4. Qing Lan project
  5. Priority Academic Program Development of Jiangsu Higher Education Institutions

向作者/读者索取更多资源

It is a long-standing challenge to achieve efficient and highly selective aerobic oxidation of methylarenes to benzaldehydes, owing to overoxidation problem stemming from the oxidizability of benzaldehyde far higher than the toluene under usual aerobic conditions. Herein we report a bio-inspired iron-catalyzed polymethylhydrosiloxane-promoted aerobic oxidation of methylarenes to benzaldehydes with high yields and selectivities. Notably, this method can tolerate oxidation-labile and reactive boronic acid group, which is normally required to be transformed immediately after its introduction, and represents a significant advance in the area of the chemistry of organoboronic acids, including the ability to incorporate both aldehyde and ketone functionalities into unprotected arylboronic acids, a class that can be difficult to access by current means. The robustness of this protocol is demonstrated on the late-stage oxidation of complex bioactive molecules, including dehydroabietic acid, Gemfibrozil, Tocopherol nicotinate, a complex polyol structure, and structurally complex arylboronic acids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据