4.8 Article

Evaluation of rapid qPCR method for quantification of E. coil at non-point source impacted Lake Michigan beaches

期刊

WATER RESEARCH
卷 156, 期 -, 页码 395-403

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2019.03.034

关键词

Beach monitoring; Recreational water quality; Fecal indicator bacteria (FIB); E. coli; Quantitative polymerase chain reaction (qPCR); Receiver operating characteristics (ROC)

向作者/读者索取更多资源

Most Great Lakes communities rely on culture-based E. coil methods for monitoring fecal indicator bacteria (FIB) at recreational beaches. These cultivation methods require 18 or more hours to generate results. As a consequence, public notifications about beach action value (BAV) exceedance are based on prior-day water quality. Rapid qPCR monitoring of bacteria in beach water solves the 24-h delay problem, though the USEPA-approved qPCR method targets enterococci bacteria, while Great Lakes communities are familiar with E. coil monitoring. For an E. coil qPCR method to be useful for water quality management, it is important to systematically characterize method performance, and establish BAVs for public notification purposes. In this study, we 1) evaluated a draft USEPA E. coli qPCR method, 2) compared E. coli qPCR measurements with two established FIB (E. coli culture and enterococci qPCR) results, and explored potential strategies to establish E. coil qPCR BAV criteria in the absence of an epidemiological study. Based on analyses of 288 water samples collected from eight of Chicago's Lake Michigan beaches, the E. coli qPCR method demonstrates acceptable performance characteristics. The method is prone to low level DNA contamination, possibly originating from assay reagents derived from E. coli bacteria. Both E. coli and enterococci BAVs were exceeded in approximately 18% of the samples. E. coli qPCR values were correlated with both E. coli culture (r = 0.83; p < 0.0001) and enterococci qPCR (r = 0.67; p < 0.0001) values. The approach recommended by the USEPA in its Technical Support Material (TSM) was used to generate candidate E. coli qPCR BAVs, as was receiver operating characteristic (ROC) analysis. Potential BAV thresholds differed substantially, ranging from 200.9 calibrator cell equivalents (CCE)/100 mL (ROC analysis, enterococci qPCR BAV as the reference) to 1000 CCE/100 mL (TSM analysis, enterococci qPCR BAV as the reference). Because we found that different approaches to establishing potential BAVs generate quite different values, guidance from USEPA about approaches to defining comparable BAVs would be useful. (C) 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据