4.1 Article

Evolution of Plasmodium falciparum drug resistance genes following artemisinin combination therapy in Sudan

出版社

OXFORD UNIV PRESS
DOI: 10.1093/trstmh/trz059

关键词

malaria; Pfcrt; Pfdhfr; Pfdhps; Pfk13; Pfmdr-1; Plasmodium falciparum; Sudan

资金

  1. Third World Organization for Women in Science, Trieste, Italy [3240219354]
  2. Sultan Qaboos University, Oman

向作者/读者索取更多资源

Background: Malaria control efforts in Sudan rely heavily on case management. In 2004, health authorities adopted artemisinin-based combination therapies (ACTs) for the treatment of uncomplicated malaria. However, some recent surveys have reported ACT failure and a prevalent irrational malaria treatment practice. Here we examine whether the widespread use of ACT and failure to adhere to national guidelines have led to the evolution of drug resistance genes. Methods: We genotyped known drug resistance markers (Pfcrt, Pfmdr-1, Pfdhfr, Pfdhps, Pfk13 propeller) and their flanking microsatellites among Plasmodium falciparum isolates obtained between 2009 and 2016 in different geographical regions in Sudan. Data were then compared with published findings pre-ACT (1992-2003). Results: A high prevalence of Pfcrt76T, Pfmdr-1-86Y, Pfdhfr51I, Pfdhfr108N, Pfdhps37G was observed in all regions, while no Pfk13 mutations were detected. Compared with pre-ACT data, Pfcrt-76T and Pfmdr-1-86Y have decayed, while Pfdhfr-51I, Pfdhfr-108N and Pfdhps-437G strengthened. Haplotypes Pfcrt-CVIET, Pfmdr-1-NFSND/YFSND, Pfdhfr-ICNI and Pfdhps-SGKAA predominated in all sites. Microsatellites flanking drug resistance genes showed lower diversity than neutral ones, signifying high ACT pressure/selection. Conclusions: Evaluation of P. falciparum drug resistance genes in Sudan matches the drug deployment pattern. Regular monitoring of these genes, coupled with clinical response, should be considered to combat the spread of ACT resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据