4.7 Article

An aggregation strategy of maximum size constraints in density-based topology optimization

期刊

STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
卷 60, 期 5, 页码 2113-2130

出版社

SPRINGER
DOI: 10.1007/s00158-019-02313-8

关键词

Length scale; Constraints aggregation; SIMP

向作者/读者索取更多资源

The maximum size constraint restricts the amount of material within a test region in each point of the design domain, leading to a highly constrained problem. In this work, the local constraints are gathered into a single one using aggregation functions. The challenge of this task is presented in detail, as well as the proposed strategy to address it. The latter is validated on different test problems as the compliance minimization, the minimum thermal compliance, and the compliant mechanism design. These are implemented in the MATLAB software for 2D design domains. As final validation, a 3D compliance minimization problem is also shown. The study includes two well-known aggregation functions, p-mean and p-norm. The comparison of these functions allows a deeper understanding about their behavior. For example, it is shown that they are strongly dependent on the distribution and amount of data. In addition, a new test region is proposed for the maximum size constraint which, in 2D, is a ring instead of a circle around the element under analysis. This slightly change reduces the introduction of holes in the optimized designs, which can contribute to improve manufacturability of maximum size-constrained components.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据