4.7 Article

Robust multiphase topology optimization accounting for manufacturing uncertainty via stochastic collocation

期刊

STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
卷 60, 期 6, 页码 2461-2476

出版社

SPRINGER
DOI: 10.1007/s00158-019-02333-4

关键词

Multimaterial topology optimization; Additive manufacturing; Robust design optimization; Stochastic collocation

向作者/读者索取更多资源

This paper presents a computational framework for multimaterial topology optimization under uncertainty. We combine stochastic collocation with design sensitivity analysis to facilitate robust design optimization. The presence of uncertainty is motivated by the induced scatter in the mechanical properties of candidate materials in the additive manufacturing process. The effective elastic modulus in each finite element is obtained by an interpolation scheme which is parameterized with three distinct elastic moduli corresponding to the available design materials. The parametrization enables the SIMP-style penalization of intermediate material properties, thus ensuring convergence to a discrete manufacturable design. We consider independent random variables for the elastic modulus of different materials and generate designs that minimize the variability in the performance, namely structural compliance. We use a newly developed quadrature rule, designed quadrature, to compute statistical moments with reduced computational cost. We show our approach on numerical benchmark problems of linear elastic continua where we demonstrate the improved performance of robust designs compared with deterministic designs. We provide the MATLAB implementation of our approach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据