4.7 Article

Hydrodynamic evaluation of gas testing chamber: Simulation, experiment

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 290, 期 -, 页码 598-606

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2019.04.023

关键词

Gas sensor; Gas testing chamber; Metal oxides; Tin oxide; Mathematical modeling; Gas flow simulation

向作者/读者索取更多资源

Gas concentration measurements by means of metal oxide microsensors represent a promising issue due to several advantages (size, low cost, power consumption, reliability...). However, improvements are required to increase performances of complete experimental systems including microsensor and testing chamber at least. This paper deals with the study of different size and shape configurations of gas testing chamber, by coupling 3D unsteady modelling and experiments in the case of a SnO2 sensor with ethanol gas flow. The influence of the testing-chamber design on the gas flow hydrodynamics and on the system response is shown. A new 3D-printed prototype chamber (boat-shape design), as compared to the commonly used testing chamber (cross-shape design), leads to an increase of the dynamics, an enhancement of the gas concentration homogeneity and a significant reduction of flow recirculation and dead volumes. In this work we have shown that the optimization of the test chamber (volume and shape) makes it possible to get as close as possible to the real electrical characteristics of the sensor. Consequently thanks to these new achieved characteristics, the performances of the whole system are improved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据