4.7 Article

Combined use of diffusive gradients in thin film, high-resolution dialysis technique and traditional methods to assess pollution and bioavailability of sediment metals of lake wetlands in Taihu Lake Basin

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 671, 期 -, 页码 28-40

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2019.03.053

关键词

DGT; HR-Peeper; Background value; Geochemical baseline; BCR sequential extraction; Metal remobilization

资金

  1. Major Science and Technology Program for Water Pollution Control and Treatment of China [2017ZX07206]

向作者/读者索取更多资源

The geochemical behavior of trace metals at the sediment/water interface in Taihu Lake, the third-largest fresh water lake in China, has been widely explored. However, information on metals in lake wetlands of the basin is lacking. Here, diffusive gradients in thin film (DGT), high-resolution dialysis technique (HR-Peeper) and traditional methods were jointly used to study the occurrence characteristics, pollution degree, bioavailability, and mobility of sediment metals in the northern lake wetlands of Jiaxing City in Taihu Lake Basin. The contents of Cr, Ni, Cu, Zn, As, Cd and Pb were 101, 52.8, 62.3, 184, 10.3, 0.4, and 39.8 mg/kg, respectively. The metals in the sediments were in an overall low enrichment level. The main form of Cd was acid-soluble (F1), and the other metals mainly existed in residual (F4) or oxidable (F3) forms. The mean DGT-labile contents (C-DGT) of Cr, Ni, Cu, Zn, As, Cd and Pb were 1.3, 1.2, 9.3, 6.7, 13.4, 0.7, and 0.8 mu g/L, respectively. CDGT-Cu and CDGT-As were significantly and positively related to the Cu and As contents in pore water (C-sol). CDGT-Cr, CDGT-Cd, CDGT-Pb, and CDGT-Cu were significantly and positively related to CF1-Cr, CF1-Cd, CF1-Pb, and CF3-Cu, respectively. The stability of Cd was the worst with a mean risk assessment code of 40%, indicating a high risk of remobilization in the sediment. The remobilization risks of other metals were low or moderate. The CDGT/Csol ratio of Cd was also the largest, with a mean of 0.99, suggesting that the Cd resupplying ability from sediment solid to pore water was strong. (c) 2019 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据