4.7 Article

RSM approach for modeling and optimization of designing parameters for inclined fins of solar air heater

期刊

RENEWABLE ENERGY
卷 136, 期 -, 页码 48-68

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2018.12.099

关键词

Solar air heater; Inclined fins; CFD; RSM

向作者/读者索取更多资源

In the present study, a simulation and response surface methodology (RSM) combined approach has been applied to investigate the thermal and thermo-hydraulic performance parameter (THPP) of solar air heater (SAH) with inclined fins. CFD based software (ANSYS Fluent v16.1) is used to simulate the SAH. RNG k - epsilon turbulence model was selected to carry out a two-dimensional simulation modeling. Moreover, RSM is applied to analyze the results of finite volume method and to optimize the process parameters of SAH. A numerical model describing the heat transfer characteristics of SAH having inclined fins has been developed and employed to study the effects of various design of fins on the average Nusselt number, fiction factor as well as THPP. The study covered different length of fin in the range of 1.5-2.5 mm, different slant angle (alpha) of fin in the range of 30 degrees-60 degrees, different pitch (P) of fin in the range of 15-25 mm, and a range of 4000-24,000 for the Reynolds numbers. Based on results of the model, the optimized values of design parameters for the optimal operation of SAH to provide the optimal THPP of 1.928 were found to be; length of fin =1.52 mm, the pitch of fin =19.04 mm, slant angle = 49 degrees and Reynolds number at 18243.5. According to the optimized values of design parameters, the enhancement ratio of Nusselt number and friction factor were found to be 2.53 and 2.22, respectively. Finally, the thermal performance of the proposed inclined fin in terms of THPP was compared to other roughness geometries, such as circle (THPP = 1.65), square-sectioned (THPP = 1.80) and L-shaped (THPP = 1.90). Accordingly, a better THPP of 1.928 was observed for the current study. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据