4.5 Article

An assessment of the dimensional accuracy and geometry-resolution limit of desktop stereolithography using response surface methodology

期刊

RAPID PROTOTYPING JOURNAL
卷 25, 期 7, 页码 1169-1186

出版社

EMERALD GROUP PUBLISHING LTD
DOI: 10.1108/RPJ-03-2019-0060

关键词

Response surface methodology; Accuracy; Stereolithography; Test artifact; Printing parameters

向作者/读者索取更多资源

Purpose This paper aims to apply a robust methodology to establish relationships between user-configurable process parameters of commercial desktop stereolithography (SLA) printers and dimensional accuracy of a custom-designed test artifact. Design/methodology/approach A detailed response surface methodology study, Box-Behnken incomplete factorial design of four factors with three levels, was carried out to evaluate process performance of desktop SLA printers. The selected factors were as follows: printing orientation angle in x-direction, printing orientation angle in y-direction, position on build platform in spatial x-coordinate, position on build tray in spatial y-coordinate and layer thickness. The proposed artifact was designed to include 12 feature groups including thin walls, holes, bosses, bridges and overhangs. Two responses were associated with the features: the dimensional deviation according to the designed value and the minimum feature size. Findings Layer thickness was the most significant factor in 70% of the analyzed responses. For example, measurement deviation was reduced about 90% when cylindrical holes were printed with the lowest layer thickness. Further, in many cases, dimensional deviation was minimized for features at the center of the platform, where the beam cures the resin in a straight line. However, at distant positions, accuracy could be improved by compensating for beam deviation by changing the object orientation angle. Originality/value The findings of this study can serve, both generally and specifically, for SLA designers and engineers who wish to optimize printing process variables and feature location to achieve high-dimensional accuracy and further understand the many coupled considerations among part design, build configuration and process performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据