4.8 Article

Assembling multidomain protein structures through analogous global structural alignments

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1905068116

关键词

protein structure prediction; domain assembly; multidomain protein; multidomain template recognition

资金

  1. National Natural Science Foundation of China [61773346]
  2. National Institute of General Medical Sciences [GM083107, GM116960]
  3. National Institute of Allergy and Infectious Diseases [AI134678]
  4. National Science Foundation [NBI1564756, ACI1548562]

向作者/读者索取更多资源

Most proteins exist with multiple domains in cells for cooperative functionality. However, structural biology and protein folding methods are often optimized for single-domain structures, resulting in a rapidly growing gap between the improved capability for tertiary structure determination and high demand for multidomain structure models. We have developed a pipeline, termed DEMO, for constructing multidomain protein structures by docking-based domain assembly simulations, with interdomain orientations determined by the distance profiles from analogous templates as detected through domain-level structure alignments. The pipeline was tested on a comprehensive benchmark set of 356 proteins consisting of 2-7 continuous and discontinuous domains, for which DEMO generated models with correct global fold (TM-score > 0.5) for 86% of cases with continuous domains and for 100% of cases with discontinuous domain structures, starting from randomly oriented target-domain structures. DEMO was also applied to reassemble multidomain targets in the CASP12 and CASP13 experiments using domain structures excised from the top server predictions, where the full-length DEMO models showed a significantly improved quality over the original server models. Finally, sparse restraints of mass spectrometry-generated cross-linking data and cryo-EM density maps are incorporated into DEMO, resulting in improvements in the average TM-score by 6.3% and 12.5%, respectively. The results demonstrate an efficient approach to assembling multidomain structures, which can be easily used for automated, genome-scale multidomain protein structure assembly.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据