4.8 Article

Anisotropic spin-orbit torque generation in epitaxial SrIrO3 by symmetry design

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1812822116

关键词

spin-Hall effect; spin-orbit torque; epitaxial thin films; SrIrO3

资金

  1. National Science Foundation [DMR-1708499, DMR-1629270]
  2. Air Force Office of Scientific Research [FA9550-15-1-0334]
  3. Army Research Office [W911NF-17-1-0462]
  4. US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences [DE-FG02-06ER46327]
  5. NSF TANMS ERC [1160504]
  6. US DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]
  7. NSF Materials Research Science and Engineering Centers program [DMR-1719875]
  8. Natural Sciences and Engineering Research Council of Canada
  9. Canadian Institute for Advanced Research
  10. Center for Quantum Materials at the University of Toronto

向作者/读者索取更多资源

Spin-orbit coupling (SOC), the interaction between the electron spin and the orbital angular momentum, can unlock rich phenomena at interfaces, in particular interconverting spin and charge currents. Conventional heavy metals have been extensively explored due to their strong SOC of conduction electrons. However, spin-orbit effects in classes of materials such as epitaxial 5d-electron transition-metal complex oxides, which also host strong SOC, remain largely unreported. In addition to strong SOC, these complex oxides can also provide the additional tuning knob of epitaxy to control the electronic structure and the engineering of spin-to-charge conversion by crystalline symmetry. Here, we demonstrate room-temperature generation of spin-orbit torque on a ferromagnet with extremely high efficiency via the spin-Hall effect in epitaxial metastable perovskite SrIrO3. We first predict a large intrinsic spin-Hall conductivity in orthorhombic bulk SrIrO3 arising from the Berry curvature in the electronic band structure. By manipulating the intricate interplay between SOC and crystalline symmetry, we control the spin-Hall torque ratio by engineering the tilt of the corner-sharing oxygen octahedra in perovskite SrIrO3 through epitaxial strain. This allows the presence of an anisotropic spin-Hall effect due to a characteristic structural anisotropy in SrIrO3 with orthorhombic symmetry. Our experimental findings demonstrate the heteroepitaxial symmetry design approach to engineer spin-orbit effects. We therefore anticipate that these epitaxial 5d transition-metal oxide thin films can be an ideal building block for low-power spintronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据