4.6 Article

Using the concordance of in vitro and in vivo data to evaluate extrapolation assumptions

期刊

PLOS ONE
卷 14, 期 5, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0217564

关键词

-

资金

  1. United States Environmental Protection Agency through its Office of Research and Development
  2. Cyprotex
  3. Research Participation Program at the National Center for Computational Toxicology, U.S. Environmental Protection Agency
  4. National Institute of Environmental Health Sciences

向作者/读者索取更多资源

Linking in vitro bioactivity and in vivo toxicity on a dose basis enables the use of high-throughput in vitro assays as an alternative to traditional animal studies. In this study, we evaluated assumptions in the use of a high-throughput, physiologically based toxicokinetic (PBTK) model to relate in vitro bioactivity and rat in vivo toxicity data. The fraction unbound in plasma (f(up)) and intrinsic hepatic clearance (Cl-int) were measured for rats (for 67 and 77 chemicals, respectively), combined with f(up) and Cl-int literature data for 97 chemicals, and incorporated in the PBTK model. Of these chemicals, 84 had corresponding in vitro ToxCast bioactivity data and in vivo toxicity data. For each possible comparison of in vitro and in vivo endpoint, the concordance between the in vivo and in vitro data was evaluated by a regression analysis. For a base set of assumptions, the PBTK results were more frequently better associated than either the results from a random model parameterization or direct comparison of the untransformed values of AC(50) and dose (performed best in 51%, 28%, and 21% of cases, respectively). We also investigated several assumptions in the application of PBTK for IVIVE, including clearance and internal dose selection. One of the better assumptions sets-restrictive clearance and comparing free in vivo venous plasma concentration with free in vitro concentration-outperformed the random and untransformed results in 71% of the in vitro-in vivo endpoint comparisons. These results demonstrate that applying PBTK improves our ability to observe the association between in vitro bioactivity and in vivo toxicity data in general. This suggests that potency values from in vitro screening should be transformed using in vitro-in vivo extrapolation (IVIVE) to build potentially better machine learning and other statistical models for predicting in vivo toxicity in humans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据