4.6 Article

FluoroCellTrack: An algorithm for automated analysis of high-throughput droplet microfluidic data

期刊

PLOS ONE
卷 14, 期 5, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0215337

关键词

-

资金

  1. National Institute of Biomedical Imaging and Bioengineering [R03EB02935]
  2. National Science Foundation, Division of Chemical, Bioengineering, Environmental, and Transport Systems [1509713]
  3. Directorate For Engineering
  4. Div Of Chem, Bioeng, Env, & Transp Sys [1509713] Funding Source: National Science Foundation

向作者/读者索取更多资源

High-throughput droplet microfluidic devices with fluorescence detection systems provide several advantages over conventional end-point cytometric techniques due to their ability to isolate single cells and investigate complex intracellular dynamics. While there have been significant advances in the field of experimental droplet microfluidics, the development of complementary software tools has lagged. Existing quantification tools have limitations including interdependent hardware platforms or challenges analyzing a wide range of high-throughput droplet microfluidic data using a single algorithm. To address these issues, an all-in-one Python algorithm called FluoroCellTrack was developed and its wide-range utility was tested on three different applications including quantification of cellular response to drugs, droplet tracking, and intracellular fluorescence. The algorithm imports all images collected using bright field and fluorescence microscopy and analyzes them to extract useful information. Two parallel steps are performed where droplets are detected using a mathematical Circular Hough Transform (CHT) while single cells (or other contours) are detected by a series of steps defining respective color boundaries involving edge detection, dilation, and erosion. These feature detection steps are strengthened by segmentation and radius/area thresholding for precise detection and removal of false positives. Individually detected droplet and contour center maps are overlaid to obtain encapsulation information for further analyses. FluoroCellTrack demonstrates an average of a similar to 92-99% similarity with manual analysis and exhibits a significant reduction in analysis time of 30 min to analyze an entire cohort compared to 20 h required for manual quantification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据