4.6 Article

Analysing extraction uniformity from porous coffee beds using mathematical modelling and computational fluid dynamics approaches

期刊

PLOS ONE
卷 14, 期 7, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0219906

关键词

-

资金

  1. Science Foundation Ireland 'Modelling of Multi-Phase Transport Processes to Enable Automation in Manufacturing, (MOMEnTUM)'
  2. European Regional Development Fund [14/SP/2750]
  3. Dairy Processing Technology Centre - Enterprise Ireland [TC 2014 0016]
  4. MACSI, the Mathematics Applications Consortium for Science and Industry - Science Foundation Ireland [12/IA/1683]

向作者/读者索取更多资源

Achieving a uniform extraction of soluble material from a porous matrix is a generic problem in various separation and filtration operations, with applications in the food processing, chemical and pharmaceutical industries. This paper describes models of fluid flow and transport of soluble material within a packed granular bed in the context of coffee extraction. Coffee extraction is described by diffusion of soluble material from particles of one or more representative sizes into fluid flowing through the packed bed. One-dimensional flow models are compared to computational fluid dynamics (CFD) models. A fine and a coarse coffee grind are considered. Model results are compared to experimental data for a packed cylindrical coffee bed and the influence of a change in geometry to a truncated cone is considered. Non-uniform flow in the truncated cone causes significant variation in the local extraction level. Coffee extraction levels during brewing are analysed using extraction maps and the degree of variation is represented on the industry standard coffee brewing control chart. A high variation in extraction yield can be expected to impart bitter flavours into the brew and thus is an important variable to quantify.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据