4.7 Article

Effects of salinity on leaf breakdown: Dryland salinity versus salinity from a coalmine

期刊

AQUATIC TOXICOLOGY
卷 177, 期 -, 页码 425-432

出版社

ELSEVIER
DOI: 10.1016/j.aquatox.2016.06.014

关键词

Microorganisms; Freshwater; Salinization; Leaf breakdown; Major ions

资金

  1. PROMOS scholarship from the Deutscher Akademischer Austauschdienst
  2. Australian Research Council Linkage Project [LP130100100]
  3. Australian Research Council [LP130100100] Funding Source: Australian Research Council

向作者/读者索取更多资源

Salinization of freshwater ecosystems as a result of human activities represents a global threat for ecosystems' integrity. Whether different sources of salinity with their differing ionic compositions lead to variable effects in ecosystem functioning is unknown. Therefore, the present study assessed the impact of dryland- (50 mu S/cm to 11,000 mu S/cm) and coalmine-induced (100 mu S/cm to 2400 mu S/cm) salinization on the leaf litter breakdown, with focus on microorganisms as main decomposer, in two catchments in New South Wales, Australia. The breakdown of Eucalyptus camaldulensis leaves decreased with increasing salinity by up to a factor of three. Coalmine salinity, which is characterised by a higher share of bicarbonates, had a slightly but consistently higher breakdown rate at a given salinity relative to dry land salinity, which is characterised by ionic proportions similar to sea water. Complementary laboratory experiments supported the stimulatory impact of sodium bicarbonates on leaf breakdown when compared to sodium chloride or artificial sea salt. Furthermore, microbial inoculum from a high salinity site (11,000 mu S/cm) yielded lower leaf breakdown at lower salinity relative to inoculum from a low salinity site (50 mu S/cm). Conversely, inoculum from the high salinity site was less sensitive towards increasing salinity levels relative to inoculum from the low salinity site. The effects of the different inoculum were the same regardless of salt source (sodium bicarbonate, sodium chloride and artificial sea salt). Finally, the microorganism-mediated leaf litter breakdown was most efficient at intermediate salinity levels (approximate to 500 mu S/cm). The present study thus points to severe implications of increasing salinity intensities on the ecosystem function of leaf litter breakdown, while the underlying processes need further scrutiny. Crown Copyright (C) 2016 Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据