4.4 Article

Verification and application of resonance broadened quasi-linear (RBQ) model with multiple Alfvenic instabilities

期刊

PHYSICS OF PLASMAS
卷 26, 期 7, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.5087252

关键词

-

资金

  1. Princeton University [DE-AC02-09CH11466]
  2. U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences [DE-FC02-04ER54698]

向作者/读者索取更多资源

The resonance broadened quasilinear (RBQ) model for the problem of relaxing the hot ion distribution function in constant-of-motion 3D space [Gorelenkov et al., Nucl. Fusion 58, 082016 (2018)] is presented with the self-consistent evolution of multiple Alfven eigenmode amplitudes. The RBQ model represents the generalization of the earlier published model [Berk et al., Nucl. Fusion 35, 1661 (1995)] by carefully examining the wave particle interaction in the presence of realistic Alfven eigenmode (AE) structures and pitch angle scattering with the help of the guiding center code ORBIT. One aspect of the generalization is that the RBQ model goes beyond the local perturbative-pendulumlike approximation for the wave particle dynamics near the resonance. An iterative procedure is introduced to account for eigenstructures varying within the resonances. It is found that a radially localized mode structure implies a saturation level 2-3 times smaller than that predicted by an earlier bump-on-tail quasilinear model that employed uniform mode structures. We apply the RBQ code to a DIII-D plasma with an elevated q-profile where the beam ion profiles exhibit stiff transport properties [Collins et al., Phys. Rev. Lett. 116, 095001 (2016)]. The properties of AE driven fast ion distribution relaxation are studied for validations of the applied RBQ model in DIII-D discharges. Initial results show that the model is robust, is numerically efficient, and can predict fast ion relaxation in present and future burning plasma experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据