4.8 Article

Efficient Transport Between Disjoint Nanochannels by a Water Bridge

期刊

PHYSICAL REVIEW LETTERS
卷 122, 期 21, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.122.214506

关键词

-

向作者/读者索取更多资源

Water channels are important to new purification systems, osmotic power harvesting in salinity gradients, hydroelectric voltage conversion, signal transmission, drug delivery, and many other applications. To be effective, water channels must have structures more complex than a single tube. One way of building such structures is through a water bridge between two disjoint channels that are not physically connected. We report on the results of extensive molecular dynamics simulation of water transport through such bridges between two carbon nanotubes separated by a nanogap. We show that not only can pressurized water be transported across a stable bridge, but also that (i) for a range of the gap's width l(g) the bridge's hydraulic conductance G(b) does not depend on l(g), (ii) the overall shape of the bridge is not cylindrical, and (iii) the dependence of G(b) on the angle between the axes of two nonaligned nanochannels may be used to tune the flow rate between the two.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据