4.8 Article

Quantification of Mixed Bloch-Neel Topological Spin Textures Stabilized by the Dzyaloshinskii-Moriya Interaction in Co/Pd Multilayers

期刊

PHYSICAL REVIEW LETTERS
卷 122, 期 23, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.122.237201

关键词

-

资金

  1. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE-SC0012704]
  2. National Research Foundation (NRF), Prime Minister's Office, Singapore, under its Competitive Research Programme (CRP Grant) [NRFCRP12-2013-01]

向作者/读者索取更多资源

The three-dimensional structure of nanoscale topological spin textures stabilized by the Dzyaloshinskii-Moriya interaction is governed by the delicate competition between the exchange, demagnetization, and anisotropy energies. The quantification of such spin textures through direct experimental methods is crucial towards understanding the fundamental physics associated with their ordering, as well as their manipulation in spintronic devices. Here, we extend the Lorentz transmission electron microscopy technique to quantify mixed Bloch-Neel chiral spin textures stabilized by the Dzyaloshinskii-Moriya interaction in Co/Pd multilayers. Analysis of the observed intensities under varied imaging conditions coupled to corroborative micromagnetic simulations yields vital parameters that dictate the stability and properties of the complex spin texture, namely, the degree of mixed Bloch-Neel character, the domain wall width, the strength of the Dzyaloshinskii-Moriya interaction, and the exchange stiffness. This approach provides the necessary framework for the application of quantitative Lorentz phase microscopy to a broad array of topological spin systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据