4.3 Article

How glycine betaine induces tolerance of cucumber plants to salinity stress?

期刊

PHOTOSYNTHETICA
卷 57, 期 3, 页码 753-761

出版社

ACAD SCIENCES CZECH REPUBLIC, INST EXPERIMENTAL BOTANY
DOI: 10.32615/ps.2019.053

关键词

Cucumis sativus; Kautsky curve; OJIP transient; osmolyte; photosystem; pigment

向作者/读者索取更多资源

The mechanism of osmoprotectant action on photosynthesis process is still not well known, especially under salt stress. The objective of this study was to evaluate and explain the effect of glycine betaine (GB) on photosynthetic efficiency and other physiological parameters of cucumber plants grown under salinity stress. Our results indicated that salinity decreased chlorophyll and carotenoids content, Ca2+ and K+ concentrations, and quantum yield parameters, such as probability that a trapped exciton moves an electron in to the electron transport chain beyond Q(A), quantum yield of electron transport from Q(A) to Q(B) in PSII, quantum yield of reduction of end electron acceptors in PSI, performance index for the photochemical activity, total performance index for the photochemical activity, trapping per reaction centers, and other parameters related to primary photochemical reactions of PSII. However, the exogenously applied GB increased most of tested parameters including the total soluble carbohydrate, proline and GB content, and Ca2+ and K+ concentrations, under salt stress. We suggest that GB can play an essential role as regulator to improve photosynthetic efficiency and thus yield of cucumber plants under salt stress conditions. At the level of photosynthesis process, the application of exogenous GB indirectly enhanced the performance of the photosynthetic machinery of cucumber plant due to the reduction of the dissipated light energy, as heat, and the increase of primary reactions of photosynthesis efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据