4.5 Article

Bioinspired conical design for efficient water collection from fog

出版社

ROYAL SOC
DOI: 10.1098/rsta.2019.0125

关键词

bioinspiration; water collection; fog; cone; Laplace pressure gradient; nonlinear

资金

  1. seed grant GOGCAP from the Center for Applied Plant Sciences (CAPS) of The Ohio State University

向作者/读者索取更多资源

Nature is known for using conical shapes to transport the collected water from fog for consumption or storage. The curvature gradient of the conical shape creates a Laplace pressure gradient in the water droplets which drives them towards the region of lower curvature. Linear cones with linearly increasing radii have been studied extensively. A smaller tip angle cone transports water droplets farther because of higher Laplace pressure gradient. Whereas a larger tip angle with a larger surface slope transports water droplets because of higher gravitational forces. In this study, for the first time, a nonlinear cone with a concave profile has been designed with small tip angle and nonlinearly increasing radius to maximize water collection. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology (part 2)'.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据