4.6 Article

Flexible control of light trapping and localization in a hybrid Tamm plasmonic system

期刊

OPTICS LETTERS
卷 44, 期 13, 页码 3302-3305

出版社

OPTICAL SOC AMER
DOI: 10.1364/OL.44.003302

关键词

-

类别

资金

  1. National Key Research and Development Program of China [2017YFA0700201, 2017YFA0700202, 2017YFA0700203]
  2. 111 Project [111-2-05]
  3. National Natural Science Foundation of China (NSFC) [61631007, 61701108, 61831006]

向作者/读者索取更多资源

A hybrid Tamm plasmonic system is proposed to investigate light manipulation at near-infrared frequency. The numerical results reveal that two remarkable absorption peaks are generated due to the different types of resonant modes excited in the structure, which can be well explained theoretically by guided-mode resonance (GMR) and Tamm plasmon polaritons. It is found that the electromagnetic energy can be easily trapped in different parts of the structure. More importantly, strong interaction between the two modes can be achieved by adjusting the structure period or incident angle, resulting in obvious mode hybridization and exhibiting unique energy-transfer characteristics. In addition, the active modulation of GMR-based absorption can be controlled in a continuous type by tuning the polarization angle or in a jump type by adjusting the chemical potential of graphene. This work should be useful for developing many high-performance optoelectronic devices, including sensors, modulators, detectors, etc. (C) 2019 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据