4.6 Article

Signal coordination before, during and after stomatal closure in response to drought stress

期刊

NEW PHYTOLOGIST
卷 224, 期 2, 页码 675-688

出版社

WILEY
DOI: 10.1111/nph.16082

关键词

abscisic acid (ABA); acoustic emission events; electrical signals; embolism; Helianthus annuus; hydraulic signals; stomatal closure; turgor change

向作者/读者索取更多资源

Signal coordination in response to changes in water availability remains unclear, as does the role of embolism events in signaling drought stress. Sunflowers were exposed to two drought treatments of varying intensity while simultaneously monitoring changes in stomatal conductance, acoustic emissions (AE), turgor pressure, surface-level electrical potential, organ-level water potential and leaf abscisic acid (ABA) concentration. Leaf, stem and root xylem vulnerability to embolism were measured with the single vessel injection technique. In both drought treatments, it was found that AE events and turgor changes preceded the onset of stomatal closure, whereas electrical surface potentials shifted concurrently with stomatal closure. Leaf-level ABA concentration did not change until after stomata were closed. Roots and petioles were equally vulnerable to drought stress based on the single vessel injection technique. However, anatomical analysis of the xylem indicated that the increased AE events were not a result of xylem embolism formation. Additionally, roots and stems never reached a xylem pressure threshold that would initiate runaway embolism throughout the entire experiment. It is concluded that stomatal closure was not embolism-driven, but, rather, that onset of stomatal closure was most closely correlated with the hydraulic signal from changes in leaf turgor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据