4.6 Article

Parallel quantum trajectories via forking for sampling without redundancy

期刊

NEW JOURNAL OF PHYSICS
卷 21, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/ab35fb

关键词

quantum computing; quantum forking; quantum sampling; quantum operating system; quantum measurement

资金

  1. Ministry of Science and ICT, Korea, under an ITRC Program [IITP-2018-2018-0-01402]
  2. Ministry of Science and ICT, Korea, under an NRF Program [2018K1A3A1A09078001]
  3. South African Research Chair Initiative of the Department of Science and Technology
  4. National Research Foundation
  5. National Research Foundation of Korea [2018K1A3A1A09078001] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

The computational cost of preparing a quantum state can be substantial depending on the structure of data to be encoded. Many quantum algorithms require repeated sampling to find the answer, mandating reconstruction of the same input state for every execution of an algorithm. Thus, the advantage of quantum computation can diminish due to redundant state initialization. We present a framework based on quantum forking that bypasses this fundamental issue and expedites a family of tasks that require sampling from independent quantum processes. Quantum forking propagates an input state to multiple quantum trajectories in superposition, and a weighted power sum of individual results from each trajectories is obtained in one measurement via quantum interference. The significance of our work is demonstrated via applications to implementing non-unitary quantum channels, studying entanglement and benchmarking quantum control. A proof-of-principle experiment is implemented on the IBM and Rigetti quantum cloud platforms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据