4.4 Article

Letrozole induces worse hippocampal synaptic and dendritic changes and spatial memory impairment than ovariectomy in adult female mice

期刊

NEUROSCIENCE LETTERS
卷 706, 期 -, 页码 61-67

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.neulet.2019.05.006

关键词

Ovariectomy; Aromatase; Letrozole; Rictor; Actin polymerization; Spatial memory

资金

  1. National Natural Science Foundation of China (NSFC) [81571059]
  2. Development and Regeneration Key Laboratory of Sichuan Province [SYS15001]

向作者/读者索取更多资源

Estrogens (E2) derived from ovaries and/or local de novo synthesis in the hippocampus profoundly regulate hippocampal structure and function, but the importance of local E2 versus ovarian E2 on hippocampal synaptic plasticity and spatial memory has not been well elucidated. The present study used ovariectomy (OVX) and intraperitoneal injection of an E2 synthase inhibitor, letrozole (LET), in adult female mice to investigate changes in hippocampal steroid receptor coactivator-1 (SRC-1), postsynaptic proteins, and actin polymerization dynamics with these treatments. Changes in the CA1 spine density, synapse density and spatial learning and memory after OVX and LET were also investigated. As a result, OVX and LET showed similar regulation of the expression of GluR1, spinophilin and p-Cofilin, but LET tended to induce more significant changes in SRC-1, PSD95, Rictor, Cofilin and actin depolymerization. More significant decreases in F-actin/G-actin, CA1 spine density and synapse density were also observed after LET than after OVX. Notably, LET-treated mice showed worse learning and memory impairment than OVX mice. Taken together, these results demonstrated that circulating E2 played a limited role and that hippocampus-derived E2 played a more important role in the regulation of hippocampal synaptic plasticity and hippocampus-based spatial learning and memory.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据