4.8 Article

The Cholinergic Basal Forebrain Links Auditory Stimuli with Delayed Reinforcement to Support Learning

期刊

NEURON
卷 103, 期 6, 页码 1164-+

出版社

CELL PRESS
DOI: 10.1016/j.neuron.2019.06.024

关键词

-

资金

  1. NIH [DC009836]
  2. Herchel Smith fellowship
  3. HHMI international student fellowship

向作者/读者索取更多资源

Animals learn to fear conditioned sound stimuli (CSs) that accompany aversive unconditioned stimuli (USs). Auditory cortex (ACx) circuits reorganize to support auditory fear learning when CS-evoked activity temporally overlaps with US-evoked acetylcholine release from the basal forebrain. Here we describe robust fear learning and acetylcholine-dependent ACx plasticity even when the US is delayed by several seconds following CS offset. A 5-s CS-US gap was not bridged by persistent CS-evoked spiking throughout the trace period. Instead, within minutes following the start of conditioning, optogenetically identified basal forebrain neurons that encode the aversive US scaled up responses to the CS and increased functional coupling with the ACx. Over several days of conditioning, bulk imaging of cholinergic basal forebrain neurons revealed sustained sound-evoked activity that filled in the 5-s silent gap preceding the US. These findings identify a plasticity in the basal forebrain that supports learned associations between sensory stimuli and delayed reinforcement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据