4.7 Article

Integrated energy-exergy optimization of a novel micro-CCHP cycle based on MGT-ORC and steam ejector refrigerator

期刊

APPLIED THERMAL ENGINEERING
卷 102, 期 -, 页码 1206-1218

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2016.04.015

关键词

CCHP; Energy; Exergy; ORC; MGT; IEE

向作者/读者索取更多资源

In the present paper a novel cycle is proposed for combined production of cooling heating and power in micro scale. The cycle comprises of a micro-gas turbine (MGT), a micro organic Rankine cycle (MORC), steam ejector refrigeration cycle (SER), and heat recovery equipments. A function called integrated energy-exergy (IEE) is proposed to optimize the cycle from energy and exergy views simultaneously by using genetic algorithm. The results show that using IEE for optimization is better than energy alone or exergy-alone optimizations. A sensitivity analyses is carried out, the cycle is most sensitive to the cooling cycle designing parameters such as the evaporator temperature, ejector compression ratio and ORC steam pressure at turbine outlet. The most exergy destructors are recuperator and combustion chamber which they count for 80% and 92% of total exergy destruction in summer and winter. In the optimum conditions the minimum pinch point temperature difference of 36 degrees C and 28 degrees C are achieved for summer and winter. The results prove energy saving of 37% and 24% for summer and winter mode working of the cycle. The overall efficiency can reach 78% in summer while at the same time the cycle exergy efficiency is 37%. Since compression energy of the cooling cycle in the winter mode is not necessary the cycle has higher exergy efficiency of 44% in winter. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据