4.5 Article

Sodium butyrate recovers high-fat diet-fed female Wistar rats from glucose dysmetabolism and uric acid-associated cardiac tissue damage

期刊

NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY
卷 392, 期 11, 页码 1411-1419

出版社

SPRINGER
DOI: 10.1007/s00210-019-01679-2

关键词

High-fat diet; Sodium butyrate; Uric acid; Oxidative stress; SCFA

向作者/读者索取更多资源

Increased global consumption of high-fat/high-calorie diet has led to higher incidence of the multifactorial cardiometabolic syndrome especially among women. The links between glucose deregulation and eventual mortal cardiac diseases are still being investigated. However, several reports have implicated elevated uric acid (UA) in the progression of metabolic disorders especially during high-fructose diet. Also, butyrate (BUT) a short-chain fatty acid is being identified with intriguing therapeutic potentials in metabolic disorders. We therefore hypothesized that high-fat diet-induced glucose deregulation and cardiac tissue damage are associated with elevated UA and attenuated by BUT in female rats. Twenty-four 10-week-old female Wistar rats with weights ranging from 135 to 150 g were treated with normal rat chow and distilled water (po) or sodium butyrate (200 mg/kg; po) or high-fat diet and distilled water (po) or high-fat diet and sodium butyrate. Treatments lasted for 6 weeks. Results showed that high-fat diet caused glucose dysmetabolism, elevated plasma triglyceride (TG), total cholesterol (TC), corticosterone, malondialdehyde (MDA), plasma and cardiac UA, and lactate dehydrogenase (LDH). High-fat diet also led to depressed reduced glutathione (GSH). Histological analysis of cardiac tissue showed cellular infarction, infiltration, and fibrosis in high-fat diet-fed rats. However, all these effects were ameliorated by BUT treatment. The findings here showed that high-fat diet resulted in glucose dysmetabolism and cardiac tissue damage through a UA-dependent mechanism and that BUT can protect against high-fat diet-induced cardiometabolic disorders through UA suppression and augmentation of glutathione antioxidant defenses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据