4.8 Article

Classifying snapshots of the doped Hubbard model with machine learning

期刊

NATURE PHYSICS
卷 15, 期 9, 页码 921-924

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41567-019-0565-x

关键词

-

资金

  1. Harvard-MIT CUA
  2. NSF [DMR-1308435, PHY-1506203, PHY-1734011]
  3. AFOSR-MURI Quantum Phases of Matter [FA9550-14-1-0035]
  4. AFOSR [FA9550-16-10323]
  5. DoD NDSEG
  6. Gordon and Betty Moore Foundation EPIQS programme
  7. NSF GRFP
  8. ONR [N00014-18-1-2863]
  9. SNSF
  10. Studienstiftung des deutschen Volkes
  11. Technical University of Munich - Institute for Advanced Study - German Excellence Initiative
  12. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy [EXC-2111-390814868]
  13. DFG [KN1254/1-1, TRR80]
  14. European Union [291763]
  15. Gordon and Betty Moore Foundation [6791]

向作者/读者索取更多资源

Quantum gas microscopes for ultracold atoms can provide high-resolution real-space snapshots of complex many-body systems. We implement machine learning to analyse and classify such snapshots of ultracold atoms. Specifically, we compare the data from an experimental realization of the two-dimensional Fermi-Hubbard model to two theoretical approaches: a doped quantum spin liquid state of resonating valence bond type(1,2), and the geometric string theory(3,4), describing a state with hidden spin order. This technique considers all available information without a potential bias towards one particular theory by the choice of an observable and can therefore select the theory that is more predictive in general. Up to intermediate doping values, our algorithm tends to classify experimental snapshots as geometric-string-like, as compared to the doped spin liquid. Our results demonstrate the potential for machine learning in processing the wealth of data obtained through quantum gas microscopy for new physical insights.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据