4.8 Article

Palaeoarchaean deep mantle heterogeneity recorded by enriched plume remnants

期刊

NATURE GEOSCIENCE
卷 12, 期 8, 页码 672-678

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41561-019-0410-y

关键词

-

资金

  1. National Natural Science Foundation of China [41430207, 41572040, 41372060]
  2. Fundamental Research Funds for the Central Universities of China [2652018115]
  3. Chinese Scholarship Council [201606010063]

向作者/读者索取更多资源

The thermal and chemical state of the early Archaean deep mantle is poorly resolved due to the rare occurrences of early Archaean magnesium-rich volcanic rocks. In particular, it is not clear whether compositional heterogeneity existed in the early Archaean deep mantle and, if it did, how deep mantle heterogeneity formed. Here we present a geochronological and geochemical study on a Palaeoarchaean ultramafic-mafic suite (3.45-Gyr-old) with mantle plume signatures in Longwan, Eastern Hebei, the North China Craton. This suite consists of metamorphosed cumulates and basalts. The meta-basalts are iron rich and show the geochemical characteristics of present-day oceanic island basalt and unusually high mantle potential temperatures (1,675 degrees C), which suggests a deep mantle source enriched in iron and incompatible elements. The Longwan ultramafic-mafic suite is best interpreted as the remnants of a 3.45-Gyr-old enriched mantle plume. The first emergence of mantle-plume-related rocks on the Earth 3.5-3.45 billion years ago indicates that a global mantle plume event occurred with the onset of large-scale deep mantle convection in the Palaeoarchaean. Various deep mantle sources of these Palaeoarchaean mantle-plume-related rocks imply that significant compositional heterogeneity was present in the Palaeoarchaean deep mantle, most probably introduced by recycled crustal material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据