4.6 Article

Torrential rainfall-triggered shallow landslide characteristics and susceptibility assessment using ensemble data-driven models in the Dongjiang Reservoir Watershed, China

期刊

NATURAL HAZARDS
卷 97, 期 2, 页码 579-609

出版社

SPRINGER
DOI: 10.1007/s11069-019-03659-4

关键词

Shallow landslide; Certainty factor; Binary logistic regression; Torrential rainfall; Typhoon Bilis

资金

  1. National Key RAMP
  2. D Program of China [2018YFC1504803]
  3. National Nature Science Foundation of China [51679127, 51439003]

向作者/读者索取更多资源

This study investigated the characteristics of rainfall-triggered landslides during the Typhoon Bilis in the Dongjiang Reservoir Watershed, China. The comparative shallow landslide susceptibility mappings (LSMs) were produced by the ensemble data-driven statistical models in a GIS environment. At first, the landslide inventory for the study area was prepared from the high-resolution QuickBird images, and China-Brazil Earth Resources Satellite images, and field survey. Other necessary data for landslide susceptibility analysis such as the amount of rainfall, geology, and topography were also collected from the respective agencies. Twelve predisposing factors were then prepared using this available dataset. To reduce the subjectivity of models and caution in the selection of predisposing factors, and to avoid the spatial autocorrelation redundancy, certainty factor approach was attempted to optimize these twelve set of parameters. For validating the accuracy of the model, the original landslide data were randomly divided into two parts: 70% (1545 landslides) for training the model and the remaining 30% (662 landslides) for validation. The verified results showed that using the optimized predisposing factors has a higher performance than using all the original twelve factors. The results of ensemble models also showed that LSM maps prepared using binary logistic regression (accuracy is 0.848) model are more accurate than those prepared using bivariate statistical analysis (accuracy is 0.837) model. Additionally, our analysis concludes that the short duration and high-intensity rainfall, drainage density, lithology, and curvature are the major influencing factors for landslide occurrences in this case study area. This research provides an improved understanding of the mechanism of landslides caused by the typhoons for the adjoining watersheds nearby the reservoir. The preliminary understandings and approach could also be applied in similar geological and rainfall-triggered case study sites in the other parts of the world for risk mitigation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据