4.7 Article

Black hole and neutron star mergers in galactic nuclei

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stz1651

关键词

stars: kinematics and dynamics; stars: neutron; stars: black holes; Galaxy: centre; Galaxy: kinematics and dynamics; galaxies: star clusters: general

资金

  1. Foreign Postdoctoral Fellowship Program of the Israel Academy of Sciences and Humanities
  2. Arskin postdoctoral fellowship at the Hebrew University of Jerusalem
  3. Israel Science Foundation I-CORE [1829/12]
  4. NSF [AST-1616157]
  5. Simons Foundation
  6. Technion Irwin and Joan Jacobs Excellence Fellowship

向作者/读者索取更多资源

Nuclear star clusters surrounding supermassive black holes ( SMBHs) in galactic nuclei contain large numbers of stars, black holes ( BHs), and neutron stars ( NSs), a fraction of which are likely to form binaries. These binaries were suggested to form a triple system with the SMBH, which acts as a perturber and may enhance BH and NS mergers via the Lidov-Kozai mechanism. We follow-up previous studies, but for the first time perform an extensive statistical study of BH-BH, NS-NS, and BH-NS binary mergers by means of direct high-precision regularized N-body simulations, including post-Newtonian ( PN) terms up to order PN2.5. We consider different SMBH masses, slopes for the BH mass function, binary semimajor axis and eccentricity distributions, and different spatial distributions for the binaries. We find that the merger rates are a decreasing function of the SMBH mass and are in the ranges similar to 0.17-0.52, similar to 0.06-0.10, and similar to 0.04-0.16 Gpc(-3) yr(-1) for BH-BH, BH-NS, and NS-NS binaries, respectively. However, the rate estimate from this channel remains highly uncertain and depends on the specific assumptions regarding the star formation history in galactic nuclei and the supply rate of compact objects ( COs). We find that similar to 10-20 per cent of the mergers enter the LIGO band with eccentricities greater than or similar to 0.1. We also compare our results to the secular approximation, and show that N-body simulations generally predict a larger number of mergers. Finally, these events can also be observable via their electromagnetic counterparts, thus making these CO mergers especially valuable for cosmological and astrophysical purposes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据