4.7 Article

Magnetic fiber headspace solid-phase microextraction coupled to GC-MS for the extraction and quantitation of polycyclic aromatic hydrocarbons

期刊

MICROCHIMICA ACTA
卷 186, 期 7, 页码 -

出版社

SPRINGER WIEN
DOI: 10.1007/s00604-019-3482-x

关键词

Magnetism; Solid-phase microextraction; Nanoporous sorbent; Polycyclic aromatic hydrocarbons; Soil

向作者/读者索取更多资源

A technique was developed for magnetic fiber headspace-solid phase microextraction (MF-HS-SPME) of polycyclic aromatic hydrocarbons (PAHs). The efficiency of the extraction of a steel SPME fiber coated with an aminoethyl-functionalized SBA-15 (Santa Barbara Amorphous 15; a nanoporous sorbent) is substantially improved after its magnetization during HS-SPME. The effects of magnetic field strength, extraction temperature, extraction time, moisture content of the sample, desorption time and desorption temperature were optimized using a simplex method. The application of a moderately strong magnetic field to the fiber results in up to 135% increase in the extraction efficiency and wider linear dynamic ranges. The PAHs (specifically naphthalene, acenaphthene, fluorene, anthracene, phenanthrene, fluoranthene and pyrene) were then quantified by GC-MS analysis. Comparison of an electromagnet and a permanent magnet indicated the superior effect of the permanent magnet for the target analytes due to the Ohmic heating of the magnetic coil and its negative effect on the extraction of some of the PAHs. The limits of detections of the PAHs are between 0.17 to 0.57ngg(-1) by using the electromagnet, and between 0.10 and 0.32ngg(-1) for the permanent magnet. Relative standard deviations of 2.9 to 7.6% were obtained for six replicated analyses of the analytes. The method was applied to some polluted soil samples, and satisfactory results were obtained.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据