4.6 Article

Automatic detection of small bowel tumors in wireless capsule endoscopy images using ensemble learning

期刊

MEDICAL PHYSICS
卷 47, 期 1, 页码 52-63

出版社

WILEY
DOI: 10.1002/mp.13709

关键词

Anderson acceleration algorithm; capsule endoscopy; ensemble learning; support vector machines; fixed-point iteration; ROI selection

资金

  1. FCT (Fundacao para a Ciencia e Tecnologia) [UID/EEA/04436/2019, SFRH/BD/92143/2013]
  2. Fundação para a Ciência e a Tecnologia [UID/EEA/04436/2019, SFRH/BD/92143/2013] Funding Source: FCT

向作者/读者索取更多资源

Purpose Wireless Capsule Endoscopy (WCE) is a minimally invasive diagnosis tool for lesion detection in the gastrointestinal tract, reaching places where conventional endoscopy is unable to. However, the significant amount of acquired data leads to difficulties in the diagnosis by the physicians; which can be eased with computer assistance. This paper addresses a method for the automatic detection of tumors in WCE by using a two-step based procedure: region of interest selection and classification. Methods The first step aims to separate abnormal from normal tissue by using automatic segmentation based on a Gaussian Mixture Model (GMM). A modified version of the Anderson method for convergence acceleration of the expectation-maximization (EM) algorithm is proposed. The proposed features for both segmentation and classification are based on the CIELab color space, as a way of bypassing lightness variations, where the L component is discarded. Tissue variability among subjects, light inhomogeneities and even intensity differences among different devices can be overcome by using simultaneously features from both regions. In the second step, an ensemble system with partition of the training data with a new training scheme is proposed. At this stage, the gating network is trained after the experts have been trained decoupling the joint maximization of both modules. The partition module is also used at the test step, leading the incoming data to the most likely expert allowing incremental adaptation by preserving data diversity. Results This algorithm outperforms others based on texture features selected from Wavelets and Curvelets transforms, classified by a regular support vector machine (SVM) in more than 5%. Conclusions This work shows that simpler features can outperform more elaborate ones if appropriately designed. In the current case, luminance was discarded to cope with saturated tissue, facilitating the color perception. Ensemble systems remain an open research field. In the current case, changes in both topology and training strategy have led to significant performance improvements. A system with this level of performance can be used in current clinical practice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据