4.5 Article

Intelligent prediction of kinetic parameters during cutting manoeuvres

期刊

MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
卷 57, 期 8, 页码 1833-1841

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11517-019-02000-2

关键词

Neural networks (computers); Machine learning; Kinetics; Athletic performance; Change of direction

向作者/读者索取更多资源

Due to its capabilities in analysing injury risk, the ability to analyse an athlete's ground reaction force and joint moments is of high interest in sports biomechanics. However, using force plates for the kinetic measurements influences the athlete's performance. Therefore, this study aims to use a feed-forward neural network to predict hip, knee and ankle joint moments as well as the ground reaction force from kinematic data during the execution and depart contact of a maximum effort 90 degrees cutting manoeuvre. A total number of 525 cutting manoeuvres performed by 55 athletes were used to train and test neural networks. Either marker trajectories or joint angles were used as input data. The correlation coefficient between the measured and predicted data indicated strong correlations. By using joint angles as the input parameters, slightly but not significantly higher accuracy was found in joint moments predictions. The prediction of the ground reaction force showed significantly higher accuracy when using marker trajectories. Hence, the proposed feed-forward neural network method can be used to predict motion kinetics during a fast change of direction. This may allow for the simplification of cutting manoeuvres experimental set-ups for and through the use of inertial sensors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据