4.7 Review

Synthesis and induced multiferroicity of perovskite PbTiO3; a review

期刊

APPLIED SURFACE SCIENCE
卷 367, 期 -, 页码 291-306

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2016.01.164

关键词

Lead titanate; Ferroelectric; Multiferroic; Dielectrics; Ferroelectric Curie temperature; Ferromagnetic Curie temperature

资金

  1. National Centre for Physics

向作者/读者索取更多资源

Multiferroics are multifunctional materials possessing particularly two significant ferroic orders i.e. ferroelectricity and ferromagnetism. Owing to the technological importance of the multiferroics in a variety of electromagnetic appliances, intensive research has been focused on exploring co-existence and coupling of ferroelectricity and magnetism at room temperature and above. PbTiO3 is a ferroelectric material with the highest spontaneous polarization Ps among all the ferroelectric perovskites. Due to scarcity of multiferroic materials, PbTiO3 is being extensively studied for induction of magnetism. This review deals with the synthesis and study of induced multiferroic behavior in ferroelectric PbTiO3. A variety of synthesis techniques have been discussed for PbTiO3 powders and films which can be modified to tune the electric and magnetic properties in the material. A detailed discussion is presented on the induction and enhancement of multiferroicity in PbTiO3 by substitution of suitable transition-metal dopants and tailoring the size and morphologies. Device applications of the material have been briefly discussed to illustrate its technological importance. Finally the review has been concluded with future perspectives. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据