4.3 Article

Enhanced osteogenic differentiation of human mesenchymal stem cells on Ti surfaces with electrochemical nanopattern formation

出版社

ELSEVIER
DOI: 10.1016/j.msec.2019.02.039

关键词

Titanium; Nanotube; Electrochemical nanopattem formation; Osteogenic differentiation; Surface treatment

资金

  1. Nano-Convergence Foundation - Ministry of Science and ICT (MSIT, Korea)
  2. Ministry of Trade, Industry and Energy (MOTIE, Korea) [R201801011]

向作者/读者索取更多资源

Titanium (Ti) and its alloys are mainly used for dental and orthopedic applications due to their excellent biocompatibility and mechanical properties. However, their intrinsic bioinertness often quotes as a common complaint for biomedical applications. Herein, we produced nanopattern Ti surfaces with 10 nm nanopores in 120 nm dimples by electrochemical nanopattern formation (ENF), and evaluated the osteogenic differentiation of human mesenchymal stem cells (hMSCs) on the nanopattern Ti surfaces. The ENF surfaces were obtained by removing the TiO2 nanotube (NT) layers prepared by an anodization process. To determine the in vitro effects of the ENF surface, cell proliferation assay, alkaline phosphatase activity assay, alizarin red staining, western blotting, and immunocytothemistry were performed. Atomic force microscopy and scanning electron microscopy analysis show that the ENF surface has an ultrafine surface roughness with highly aligned nanoporous morphology. hMSCs on ENF surfaces exhibit increased proliferation and enhanced osteogenic differentiation as compared to the ordered TiO2 nanotubular and compact TiO2 surfaces. Surface modification with the ENF process is a promising technique for fabricating osteointegrative implant materials with a highly bioactive, rigid and purified nano surfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据