4.5 Article

Effect of salt on strength development of marine soft clay stabilized with cement-based composites

期刊

MARINE GEORESOURCES & GEOTECHNOLOGY
卷 38, 期 6, 页码 672-685

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/1064119X.2019.1612971

关键词

Marine soft clay; cement-based composites; salt; consumption effect; mathematical models

向作者/读者索取更多资源

Marine soft clay with a high salt concentration is widely distributed in coastal areas. In this study, cement-based composites consisting of cement, silica fume, plant ash and NaOH were used as a substitute for ordinary Portland cement, and the effect of salt (sodium chloride) on the strength development of clay was investigated by unconfined compressive strength (UCS) testing and scanning electron microscopy (SEM). With the addition of sodium chloride (NaCl), the amount of cementitious materials decreased, and the salt (sodium chloride) was considered to consume the cement-based composites. The consumption effect could be quantitatively evaluated by the consumption index of salt (CIS) and the clay-water/cement ratio hypothesis. The relationship between the CIS and curing period and an UCS prediction model of clay stabilized with cement-based composites with different salt contents and curing times were established. The CIS gradually decreased with increasing curing time and cement-based composites content. The accuracy of the prediction model was evaluated by a comparative analysis between the measured strengths and predicted strengths; the deviation was mostly within 10%. SEM analyses were employed to describe the changes in the microstructure of the specimens and the influencing mechanism of salt on clay stabilized with cement-based composites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据