4.4 Article

Using deep Siamese neural networks for detection of brain asymmetries associated with Alzheimer's Disease and Mild Cognitive Impairment

期刊

MAGNETIC RESONANCE IMAGING
卷 64, 期 -, 页码 190-199

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.mri.2019.07.003

关键词

Structural magnetic resonance imaging; Alzheimer's Disease; Mild Cognitive Impairment; Machine learning; Deep learning; Siamese networks

资金

  1. Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health) [U01 AG024904]
  2. DOD ADNI (Department of Defense) [W81XWH-12-2-0012]
  3. National Institute on Aging
  4. National Institute of Biomedical Imaging and Bioengineering
  5. AbbVie
  6. Alzheimer's Association
  7. Alzheimer's Drug Discovery Foundation
  8. Araclon Biotech
  9. BioClinica, Inc.
  10. Biogen
  11. Bristol-Myers Squibb Company
  12. CereSpir, Inc.
  13. Cogstate
  14. Eisai Inc.
  15. Elan Pharmaceuticals, Inc.
  16. Eli Lilly and Company
  17. Eurolmmun
  18. F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.
  19. Fujirebio
  20. GE Healthcare
  21. IXICO Ltd.
  22. Janssen Alzheimer Immunotherapy Research & Development, LLC.
  23. Johnson & Johnson Pharmaceutical Research & Development LLC.
  24. Lumosity
  25. Lundbeck
  26. Merck Co., Inc.
  27. Meso Scale Diagnostics, LLC.
  28. NeuroRx Research
  29. Neurotrack Technologies
  30. Novartis Pharmaceuticals Corporation
  31. Pfizer Inc.
  32. Piramal Imaging
  33. Servier
  34. Takeda Pharmaceutical Company
  35. Transition Therapeutics
  36. Canadian Institutes of Health Research
  37. NIH [P41-EB015909, R01-EB020062]
  38. NIA [U19-AG033655]
  39. National Science Foundation [ACI-1548562]

向作者/读者索取更多资源

In recent studies, neuroanatomical volume and shape asymmetries have been seen during the course of Alzheimer's Disease (AD) and could potentially be used as preclinical imaging biomarkers for the prediction of Mild Cognitive Impairment (MCI) and AD dementia. In this study, a deep learning framework utilizing Siamese neural networks trained on paired lateral inter-hemispheric regions is used to harness the discriminative power of whole-brain volumetric asymmetry. The method uses the MRICloud pipeline to yield low-dimensional volumetric features of pre-defined atlas brain structures, and a novel non-linear kernel trick to normalize these features to reduce batch effects across datasets and populations. By working with the low-dimensional features, Siamese networks were shown to yield comparable performance to studies that utilize whole-brain MR images, with the advantage of reduced complexity and computational time, while preserving the biological information density. Experimental results also show that Siamese networks perform better in certain metrics by explicitly encoding the asymmetry in brain volumes, compared to traditional prediction methods that do not use the asymmetry, on the ADNI and BIOCARD datasets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据