4.6 Article

Drag Reduction of Anisotropic Superhydrophobic Surfaces Prepared by Laser Etching

期刊

LANGMUIR
卷 35, 期 34, 页码 11016-11022

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.9b01040

关键词

-

资金

  1. National Natural Science Foundation of China [61474034]
  2. State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology) [2016TS 06]

向作者/读者索取更多资源

In this research, the anisotropic superhydrophobic surface is prepared on a stainless steel surface by laser etching, and the drag reduction property of the anisotropic surface is studied by a self-designed solid liquid interface friction test device. Periodic arrangement structures of quadrate scales with oblique grooves are obtained on a stainless steel surface by a laser. After modification by fluoride, the surface shows superhydrophobicity and anisotropic adhesive property. Here, the inclined direction of grooves and the inverse direction are defined as RO and OR, respectively. By changing the inclination of the grooves, a surface is obtained with a contact angle of 160 and a rolling angle difference of 6 along the RO and inverse RO direction. It is verified by numerical simulation and experiment that the subjected force of water droplets on the surface is different along the RO and inverse RO direction. Furthermore, the as-prepared surface has different drag reduction effects along the two directions. With the increase of velocity, the drag reduction effect of the superhydrophobic surface decreases against the RO direction, while the drag reduction effect along the RO direction is almost unchanged. We believe the anisotropic surface will be helpful in novel microfluid devices and shipping transportation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据