4.7 Article

Erosion-based analysis of breaching of Baige landslide dams on the Jinsha River, China, in 2018

期刊

LANDSLIDES
卷 16, 期 10, 页码 1965-1979

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10346-019-01247-y

关键词

Landslide; Landslide dam; Dam breaching; Yangtze River; Erosion; Flood

资金

  1. National Key Research and Development Program of the Ministry of Science and Technology of China [2018YFC1508600]

向作者/读者索取更多资源

The Yangtze River is one of the most important rivers in China due to its large basin size, the large population along the river, and the numerous large dams and reservoirs on the river. The Jinsha River, the upper reach of the Yangtze River, was dammed twice recently at Baige, Tibet, one on 10 October 2018 and the other on 3 November 2018 (UTC + 8). Accordingly, two large landslide dams, 61 m and 96 m in height to the lowest dam crest, were formed in a 3-week interval. Due to the large inflow rates at the time of damming, the barrier lake level rose rapidly, posing huge risks to the downstream residents and properties. In managing the landslide dam risk, one of the important tasks is to predict the dam breaching flood beforehand. This paper focuses on rapid prediction of the dam breaching hydrograph and breach geometric parameters of the two landslide dams. The predictions were made timely before the breaching of the two landslide dams using both erosion-based empirical equations and numerical simulation and were refined based on detailed field investigation at the site after breaching. Comprehensive field investigations were conducted to determine the geological structures of the landslide dams, characterize the erodibility of dam materials, and measure the final beach dimensions. The simulated dam breaching processes, outflow hydrographs, lake water level changes, and final breach dimensions were validated by field observations. Compared with the hypothetical scenario without a diversion channel on the second landslide dam, a diversion channel 15 m in depth successfully lowered the peak flood discharge by about one third and helped to mitigate the flood risk significantly. The analysis outcome serves as basis for warning and evacuation of the downstream residents and making appropriate engineering risk mitigation plans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据