4.7 Article

Blockade of TGF-β signaling to enhance the antitumor response is accompanied by dysregulation of the functional activity of CD4+CD25+Foxp3+ and CD4+CD25-Foxp3+ T cells

期刊

JOURNAL OF TRANSLATIONAL MEDICINE
卷 17, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12967-019-1967-3

关键词

TGF-beta; SM16; Mice; Treg subsets; Anti-tumor response

资金

  1. Providence Portland Foundation

向作者/读者索取更多资源

BackgroundThe pleiotropic cytokine, transforming growth factor (TGF)-beta, and CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) play a critical role in actively suppressing antitumor immune responses. Evidence shows that TGF-beta produced by tumor cells promotes tolerance via expansion of Tregs. Our group previously demonstrated that blockade of TGF-beta signaling with a small molecule TGF-beta receptor I antagonist (SM16) inhibited primary and metastatic tumor growth in a T cell dependent fashion. In the current study, we evaluated the effect of SM16 on Treg generation and function.MethodsUsing BALB/c, FoxP3eGFP and Rag(-/-) mice, we performed FACS analysis to determine if SM16 blocked de novo TGF-beta-induced Treg generation in vitro and in vivo. CD4(+) T cells from lymph node and spleen were isolated from control mice or mice maintained on SM16 diet, and flow cytometry analysis was used to detect the frequency of CD4(+)CD25(-)FoxP3(+) and CD4(+)CD25(+)FoxP3(+) T cells. In vitro suppression assays were used to determine the ability to suppress naive T cell proliferation in vitro of both CD4(+)CD25(+)FoxP3(+) and CD4(+)CD25(-)FoxP3(+) T cell sub-populations. We then examined whether SM16 diet exerted an inhibitory effect on primary tumor growth and correlated with changes in FoxP3(+)expression. ELISA analysis was used to measure IFN-gamma levels after 72h co-culture of CD4(+)CD25(+) T cells from tumor-bearing mice on control or SM16 diet with CD4(+)CD25(-) T cells from naive donors.ResultsSM16 abrogates TGF-beta-induced Treg generation in vitro but does not prevent global homeostatic expansion of CD4(+) T cell sub-populations in vivo. Instead, SM16 treatment causes expansion of a population of CD4(+)CD25(-)Foxp3(+) Treg-like cells without significantly altering the overall frequency of Treg in lymphoreplete naive and tumor-bearing mice. Importantly, both the CD4(+)CD25(-)Foxp3(+) T cells and the CD4(+)CD25(+)Foxp3(+) Tregs in mice receiving SM16 diet exhibited diminished ability to suppress naive T cell proliferation in vitro compared to Treg from mice on control diet.ConclusionsThese findings suggest that blockade of TGF-beta signaling is a potentially useful strategy for blunting Treg function to enhance the anti-tumor response. Our data further suggest that the overall dampening of Treg function may involve the expansion of a quiescent Treg precursor population, which is CD4(+)CD25(-)Foxp3(+).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据