4.4 Article

Resonant, broadband, and highly efficient optical frequency conversion in semiconductor nanowire gratings at visible and UV wavelengths

出版社

OPTICAL SOC AMER
DOI: 10.1364/JOSAB.36.002346

关键词

-

类别

资金

  1. Rita Levi-Montalcini Italian Ministry of Education and Research
  2. International Technology Center-Atlantic [W911NF-16-1-0563]

向作者/读者索取更多资源

Using a hydrodynamic approach, we examine bulk- and surface-induced second- and third-harmonic generation from semiconductor nanowire gratings having a resonant nonlinearity in the absorption region. We demonstrate resonant, broadband, and highly efficient optical frequency conversion: contrary to conventional wisdom, we show that harmonic generation can take full advantage of resonant nonlinearities in a spectral range where nonlinear optical coefficients are boosted well beyond what is achievable in the transparent, long-wavelength, non-resonant regime. Using femtosecond pulses with approximately 500 MW/cm(2) peak power density, we predict third-harmonic conversion efficiencies of approximately 1% in a silicon nanowire array, at nearly any desired UV or visible wavelength, including the range of negative dielectric constant. We also predict surface second-harmonic conversion efficiencies of order 0.01%, depending on the electronic effective mass; bistable behavior of the signals as a result of a reshaped resonance; and the onset of fifth-order nonlinear effects. These remarkable findings, arising from the combined effects of nonlinear resonance dispersion, field localization, and phase locking, could significantly extend the operational spectral bandwidth of silicon photonics, and strongly suggest that neither linear absorption nor skin depth should be motivating factors to exclude either semiconductors or metals from the list of useful or practical nonlinear materials in any spectral range. (C) 2019 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据