4.5 Article

Representing arbitrary acoustic source and sensor distributions in Fourier collocation methods

期刊

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
卷 146, 期 1, 页码 278-288

出版社

ACOUSTICAL SOC AMER AMER INST PHYSICS
DOI: 10.1121/1.5116132

关键词

-

资金

  1. Engineering and Physical Sciences Research Council, UK [EP/L020262/1, EP/P008860/1]
  2. European Union's Horizon 2020 research and innovation programme H2020 ICT 2016-2017 [732411]
  3. Engineering and Physical Sciences Research Council [EP/P008860/1] Funding Source: researchfish
  4. EPSRC [EP/L020262/1, EP/P008860/1] Funding Source: UKRI

向作者/读者索取更多资源

Accurately representing acoustic source distributions is an important part of ultrasound simulation. This is challenging for grid-based collocation methods when such distributions do not coincide with the grid points, for instance when the source is a curved, two-dimensional surface embedded in a three-dimensional domain. Typically, grid points close to the source surface are defined as source points, but this can result in staircasing and substantial errors in the resulting acoustic fields. This paper describes a technique for accurately representing arbitrary source distributions within Fourier collocation methods. The method works by applying a discrete, band-limiting convolution operator to the continuous source distribution, after which source grid weights can be generated. This allows arbitrarily shaped sources, for example, focused bowls and circular pistons, to be defined on the grid without staircasing errors. The technique is examined through simulations of a range of ultrasound sources, and comparisons with analytical solutions show excellent accuracy and convergence rates. Extensions of the technique are also discussed, including application to initial value problems, distributed sensors, and moving sources. (C) 2019 Author(s).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据