4.7 Article

Design and photocatalytic activity of nanosized zinc oxides

期刊

APPLIED SURFACE SCIENCE
卷 368, 期 -, 页码 258-266

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2016.01.211

关键词

Zinc oxide; Structural properties; Morphology; Malachite green; Photocatalytic activity

向作者/读者索取更多资源

Zinc oxide particles with various morphologies were successfully prepared via three synthesis methods: precipitation; tribophysical treatment and sonochemistry. The as-synthesized samples were characterized by X-ray diffraction (XRD); infrared spectroscopy (IR); scanning electron microscope (SEM); BET specific surface area; electron-paramagnetic resonance (EPR), UV-Vis absorption/diffuse reflectance and X-ray photoelectron spectroscopy (XPS). Photocatalytic activities of the samples were evaluated by degradation of Malachite Green (MG) in an aqueous solution under UV and visible irradiation. The obtained ZnO powders possess crystallites size below 20 nm. The ZnO with spherical particles were obtained by precipitation method. The sonochemistry approach leads to preparation of ZnO with nanorod particles. The calculated band gaps of various ZnO powders belong to the range from 3.12 to 3.30 eV. The obtained polycrystalline zinc oxides exhibit good photocatalytic activity which is strongly influenced by the preparation conditions. The nanorod ZnO exhibits high photocatalytic activity under UV irradiation which is attributed to the morphology and the geometric surface of the particles. The ZnO obtained by precipitation has better photocatalytic efficiency under visible irradiation due to high B.E.T. specific surface area and the low level of band gap. Tribophysical treatment of a particle size homogeneous system leads to deterioration of the photocatalytic activity of the material. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据