4.7 Article

Effect of Y2O3 contents on oxidation resistance at 1150 °C and mechanical properties at room temperature of ODS Ni-20Cr-5Al alloy

期刊

APPLIED SURFACE SCIENCE
卷 385, 期 -, 页码 587-596

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2016.05.143

关键词

Ni-based superalloy; Oxidation; Mechanical properties; Oxide scale; Selective oxidation

资金

  1. Natural Science Foundation of Guangxi [2015GXNSFAA139252, 2014GXNSFCA118013]
  2. National Nature Science Foundation of China [51371059]

向作者/读者索取更多资源

Ni-20Cr-5Al alloy with Y2O3 addition (i.e., 0, 0.2, 0.4, 0.6, 0.8, 1.0, 3.0 and 5.0 wt%) are used to prepare oxide dispersion strengthening (ODS) Ni-based superalloy by powder metallurgy technology. The effect of Y2O3 particles on oxidation resistance at 1150 degrees C and mechanical properties at room temperature of Ni-20Cr-5Al alloy was investigated. The results show that the oxidation resistance of alloys is improved when the content of Y2O3 is under 0.6 wt%. The oxidation resistance of alloys decreased obviously when the content of Y2O3 is over 0.8 wt%. It is due to the small amount of Y2O3 is conducive to form stable oxide scale, and improves the adhesion of oxide scale and matrix. While Y2O3 content is too high, it is easier to result in segregation of Y2O3, which create defects in matrix and decrease exfoliation resistance of oxide scale. Continuous and compact Al2O3 oxide scale can effectively protect matrix. The relative density of alloys can be significantly increased with Y2O3 addition which is 0.2-0.6 wt%, it's speculated that distribution of Y2O3 in matrix is benefit to promote rearrangement and densification of grains during process of sintering. While Y2O3 content is more than 0.8 wt%, Y2O3 will hinder viscous flow and reduce relative density due to its strong thermal stability. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据